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Organic solar cells (OSCs) show a promising commercializa-
tion  prospect  with  their  power  conversion  efficiencies  (PCEs)
exceeding  18%[1−6].  Among  various  types  of  OSCs,  all-poly-
mer  solar  cells  (all-PSCs)  with  a  physical  blend  of  p-  and  n-
type polymer as the active layer to harvest solar irradiation at-
tract growing attention due to their unique advantages like ex-
cellent morphological stability, and mechanical durability[7]. Re-
cently, great progresses have been achieved in this field includ-
ing  the  development  of  high-performance  polymer  accept-
ors  and  the  advances  in  morphology  regulation[8−13].  Particu-
larly,  a  PCE  of  17.20%  has  been  realized  very  recently  by  all-
PSCs via properly aligned energy levels and optimal active-lay-
er  morphology[8].  This  achievement  has  significantly  reduced
the  PCE  gap  between  all-PSCs  and  small  molecular  acceptor-
based  OSCs,  indicating  the  bright  future  of  all-PSCs.  There-
fore,  a  highlight  on  these  important  progresses  is  timely  and
will effectively drive the development of all-PSCs.

In the early stage, the electron acceptors employed in all-
PSCs  were  mainly  dominated  by  perylene  diimide  (PDI)  and
naphthalene  diimide  (NDI)  polymers[7, 14−18].  Specifically,  an
NDI-based polymer with a trade name of N2200 (Fig. 1) is the
most widely used electron acceptor in all-PSCs[19−22]. This poly-
mer was initially reported by Facchetti et al. in 2009, which ex-
hibited  appropriate  lowest  unoccupied  molecular  orbital
(LUMO)  energy  level  (~–4.0  eV)  and  high  electron  mobility
(~10–3 cm2/(V·s))[23].  Through delicate optimization of the act-
ive-layer morphology, the highest PCE of all-PSCs with N2200
reached  11.76%,  which  is  comparable  to  that  of  fullerene-
based  OSCs[22].  However,  further  efficiency  improvement  of
N2200-based all-PSCs was hampered by the limited short-cir-
cuit  current  density  (Jsc).  This  is  caused  by  the  low  external
quantum  efficiency  (EQE)  in  the  long  wavelength  region  due
to  the  low  absorption  coefficient  (~3  ×  104 cm–1 at  700  nm)
of  N2200.  Besides,  NDI-based  polymers  usually  lead  to  the
formation of large domains in active layer due to the strong ag-
gregation ability  of  NDI-based polymers.  Considerable  efforts
were  thus  devoted  to  regulate  the  morphology  of  the  active
layer  of  all-PSCs  with  NDI  polymers.  The  reported  morpho-
logy  optimization  strategies  span  from  chemistry  (such  as
side chain functionalization, co-monomer selection, ternary co-
polymerization,  etc.)[24−27] to  physics  (such as  the selection of
matched  donors,  solvent  optimization,  post-treatment  by

thermal annealing or solvent annealing, etc.)[28−31]. An import-
ant  advantage  of  NDI-based  polymers  is  that  they  can  afford
very  stable  devices[32−34],  which  makes  them a  class  of  prom-
ising  polymer  acceptors  should  the  device  efficiency  can  be
further improved.

To  overcome  the  drawbacks  associated  with  NDI-  and
PDI-based polymers, a few n-type polymers with donor–accept-
or  alternating  skeleton  were  thus  developed  for  use  as  elec-
tron acceptors in all-PSCs[35−39]. In 2015, Liu and co-workers re-
ported a polymer acceptor featuring boron-nitrogen coordina-
tion bond (B←N) for all-PSCs[35],  which offered high open-cir-
cuit  voltage  (Voc)  due  to  the  high-lying  LUMO  energy  level.
After that,  a few polymer acceptors based on B←N coordina-
tion  bond  with  superior  optoelectronic  properties  were  de-
veloped[40].  For  example,  PBN-12  (Fig.  1)  afforded  a  decent
PCE  of  10.1%  and  a  high Voc of  1.17  V  benefitting  from  the
high  LUMO  level  of  the  polymer[37].  However,  this  polymer
suffered from narrow light absorption range due to the large
optical  bandgap of 1.78 eV.  As a result,  the Jsc of  the best all-
PSCs with PBN-12 only reached 13.39 mA/cm2. Guo group de-
veloped  a  donor–acceptor  alternating  narrow-bandgap  poly-
mer  acceptor  (DCNBT-IDT, Fig.  1)  based  on  the  electron-defi-
cient unit 5,6-dicyano-2,1,3-benzothiadiazole (DCNBT), possess-
ing an optical  bandgap of  1.43  eV[38].  The  all-PSCs  with  DCN-
BT-IDT offered a decent PCE of 8.32% when blended with the
polymer  donor  PBDB-T.  By  copolymerizing  DCNBT  with  a
stronger  electron-rich  monomer,  the  resulting  polymer  DCN-
BT-TPIC  (Fig.  1)  further  extended  the  light  absorption  onset
to  970  nm  and  obtained  a  maximum  absorption  coefficient
of  ~7.5  ×  104 cm–1[39].  As  a  result,  the  best  all-PSC  with  DCN-
BT-TPIC  gave  a  PCE  of  10.22%  with  a Jsc of  22.52  mA/cm2.
However, the fill factor (FF) of all-PSCs with DCNBT-IDT or DCN-
BT-TPIC was ~0.65, which restricted the overall device perform-
ance.  Encouragingly,  an  FF  of  0.74  was  achieved  by  DCNBT-
IDT via a  delicate  design  of  ternary  blend  and  p-doping  the
polymer  donor  with  2,3,5,6-tetrafluoro-7,7,8,8-tetracyan-
oquinodimethane  (F4-TCNQ),  yielding  a  remarkable  PCE  of
11.87%[41].  These  results  demonstrated  the  potential  of  DCN-
BT-based polymers for high-performance all-PSCs.

The  leap-forward  advance  of  all-PSCs  should  be  attrib-
uted  to  the  strategy  of  the  polymerization  of  non-fullerene
small  molecular  acceptors  (Fig.  1)[42, 43].  This  kind of  polymers
(PSMAs)  retain  the  merits  of  their  parent  small  molecular  ac-
ceptors  including narrow optical  bandgap,  high light  absorp-
tion coefficient, suitable energy levels, and high charge mobil-
ity[44].  This  strategy  was  first  reported  by  Li  group  in  2017
with  the  synthesis  of  PZ1  (Fig.  1),  which  is  a  polymer  of
A–D–A type small  molecular acceptor IDIC[42, 45].  Impressively,

  
Baoqi Wu and Bingyan Yin contributed equally to this work.
Correspondence to: C H Duan, duanchunhui@scut.edu.cn; L M Ding,

ding@nanoctr.cn
Received 19 JUNE 2021.

©2021 Chinese Institute of Electronics

COMMENTS AND OPINIONS

Journal of Semiconductors
(2021) 42, 080301

doi: 10.1088/1674-4926/42/8/080301

 

 
 

http://dx.doi.org/10.1088/1674-4926/42/8/080301
http://dx.doi.org/10.1088/1674-4926/42/8/080301
mailto:duanchunhui@scut.edu.cn
mailto:ding@nanoctr.cn


a  highly  efficient  all-PSC  with  a  PCE  of  9.19%  was  made
based on PZ1. This result greatly stimulated the activities in de-
veloping  high-performance  polymer  acceptors  by  polymeriz-
ing  non-fullerene  small  molecular  acceptors.  More  recently,
several polymer acceptors based on a prevailing small molecu-
lar  acceptor,  Y6,  were  synthesized  by  several  groups[43, 46−51].
For  example,  the  polymer  PJ1  (Fig.  1)  developed  by  Huang
group afforded a PCE of 14.4%, which is  the record efficiency
for  all-PSCs  at  that  time[43].  Further,  a  higher  PCE  of  15.4%
and an FF over 0.75 were achieved through tuning the molecu-
lar weights of the polymer donor (PBDB-T) to form optimal act-
ive-layer morphology[52].  One of the drawbacks of this kind of
polymer  acceptors  is  the  large  batch-to-batch  variation.  Tak-
ing PYT (Fig.  1)  as an example,  the PCEs for all-PSCs with PYT
made by different groups varied from 11% to 15%[47, 51, 53, 54].
This  issue  might  be  caused by  the  fact  that  the  polymers  are
isomeric mixtures due to the position of the terminal Br atom
is  uncertain.  Further  efforts  were  thus  devoted  to  synthesiz-
ing  polymer  acceptors  with  isomerically  pure  monomers.
These  polymers  offered  over  15%  efficiency  in  the  resulting

all-PSCs,  which  evidenced  the  significance  of  regioregularity
control  of  this  kind  of  polymers[8, 9, 12, 55, 56].  For  example,  Jen
group[12] reported  a  regioregular  polymer  acceptor  PZT-γ
(Fig.  1)  based  on  Y6,  which  gave  an  impressive  PCE  of  15.8%
with  a  high Jsc of  24.7  mA/cm2.  Under  the  same  condition,
the  reference  polymer  PZT  with  irregular  conjugated  main
chain  offered a  lower  PCE of  14.5%.  Another  issue associated
with this kind of polymers lies in the chemical and photo-oxid-
ation instability, which has been widely recognized in their par-
ent  small  molecular  acceptors[57−60].  Therefore,  further  evalu-
ation is needed before the practical application of this kind of
polymers.

Morphology  optimization  for  the  active  layer  is  another
key for realizing high-performance all-PSCs. In most cases, ex-
cessive phase separation occurred due to the reduced entrop-
ic  contribution  in  all-polymer  blends,  which  thereby  resulted
in  limited  donor/acceptor  interfaces  and  small Jsc

[61].  Besides,
intimately  mixed  morphology  can  also  be  formed  when  the
polymer  donor  and  acceptor  are  too  miscible,  which  in  turn
hampers  charge  transport  and  leads  to  severe  geminate  and
nongeminate recombination[7]. Generally, the active-layer mor-
phology  of  all-PSCs  can  be  optimized  by  controlling  the  film
deposition  process  and  performing  post-treatment.  For  ex-
ample,  Zhu et  al.[22] found  that  the  use  of  a  volatile  solvent,
2-methyltetrahydrofuran  (MTHF),  can  freeze  the  morphology
of  the  blend  of  PTzBI-Si  (Fig.  2)  and  N2200  at  the  early  stage
of  phase  separation  and  maintain  a  moderate  crystalline  fib-
ril network, whereas the blend film processed from a high boil-
ing-point  solvent,  chlorobenzene  (CB),  showed  excessive
phase separation with large domains (Fig. 3). The film crystallin-
ity  was  further  improved  by  subsequent  thermal  and  solvent
vapor  annealing,  which  effectively  facilitated  charge  trans-
port  and  reduced  the  recombination.  As  a  result,  the  all-PSC
processed  from  MTHF  gave  a  PCE  of  11.76%,  which  is  five
times higher than that for the device processed from CB.

Ternary blend strategy is frequently used to optimize the
active-layer  morphology  of  all-PSCs.  For  example,  the  in-

Table 1.   Performance data for all-PSCs.

Acceptor Donor Voc
(V)

Jsc
(mA/cm2) FF PCE

(%) Ref.

N2200 PTzBI-Si 0.88 17.6 0.76 11.76 [22]
NOE10 PBDT-TAZ 0.84 12.9 0.75 8.10 [34]
PBN-12 CD1 1.17 13.4 0.64 10.07 [37]
DCNBT-TPIC PBDTTT-E-T 0.70 22.5 0.65 10.22 [39]
DCNBT-IDT PBDB-T/

PNDT-T
0.91 17.5 0.74 11.87 [41]

PZ1 PM6 0.96 17.1 0.68 11.20 [45]
PJ1 JD40 0.91 23.2 0.75 15.80 [11]
PYT PBDB-T 0.89 23.0 0.74 15.17 [54]
PZT-γ PBDB-T 0.90 24.7 0.71 15.80 [12]
PY-IT/BNT PM6 0.96 22.7 0.74 16.09 [9]
PY2F-T/PYT PM6 0.90 25.2 0.76 17.20 [8]
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Fig. 1. Chemical structures of the polymer acceptors.
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creased crystallinity of the host polymer acceptor (PY-IT) with
more  compact  lamellar  and  π–π  stacking  has  been  achieved
by  introducing  the  third  component  BN-T  (Fig.  1)  into  the
PM6:PY-IT  blend,  which  is  beneficial  to  exciton  splitting  and
charge  transport[9].  Meanwhile,  the  scale  of  phase  separation
was not influenced.  As a  result,  the ternary all-PSCs based on
PM6:PY-IT:BN-T  achieved  a  remarkable  PCE  of  16.09%,  which
is  considerably  higher  than  the  PCE  (15.11%)  given  by
PM6:PY-IT  cells.  More  recently,  Sun et  al.  demonstrated  that
the  addition  of  PYT  could  reduce  the  π–π  stacking  distance

and  maintain  a  favorable  face-on  orientation  of  the  polymer
acceptor  in  PM6:PYT:PY2F-T  blend  without  negatively  affect-
ing  the  phase  separation.  The  PM6:PYT:PY2F-T  cells  gave  a
PCE  of  17.20%,  significantly  outperforming  the  PM6:PYT
(14.5%) and PM6:PY2F-T cells (15.0%)[8].

The formation of pseudo-bilayer structure or P–i–N struc-
ture via layer-by-layer deposition of polymer donor and accept-
or is effective to modulate the active layer morphology of all-
PSCs, which can avoid the complicated phase separation pro-
cess in bulk-heterojunction (BHJ) blend and simplify morpho-
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Fig. 2. Chemical structures of the polymer donors.

 

 

Fig. 3.  (Color online) Atomic force microscopy (AFM) height (first row) and phase (second row) images, scanning near-field optical microscopy
(SNOM) images (third row), and transmission electron microscopy (TEM) images (fourth row) for PTzBI-Si:N2200 blend films processed under differ-
ent conditions. Reproduced with permission[22], Copyright 2019, John Wiley and Sons.
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logy control. Besides, the pseudo-bilayer configuration can of-
fer  desirable  vertical  gradient  distribution  in  the  active  layer.
Pioneering work of pseudo-bilayer all-PSCs was performed by
Xu et al.[62], in which PBDB-T and N2200 were used as the poly-
mer donor and acceptor, respectively. Both the donor and ac-
ceptor  layers  are  highly  ordered  with  a  face-on  orientation,
which  enabled  more  efficient  charge  separation,  better  carri-
er  transport,  and  less  trap-assisted  recombination  in  compa-
rison  to  the  BHJ  device.  As  a  result,  a  PCE  of  9.52%  was
achieved,  nearly  50%  improvement  compared  with  the  BHJ
device. Based on the same strategy, Wu et al.[54] achieved a re-
markable PCE of  15.2% in PBDB-T/PYT pseudo-bilayer  device.
These results proved that layer-by-layer deposition is a practic-
ally useful method to achieve high-performance all-PSCs.

Device stability is of great importance for commercial ap-
plications[63].  Liu et  al.[34] compared  the  stability  of  PSCs
based  on  the  same  polymer  donor  (PBDT-TAZ)  and  different
acceptors (PCBM, ITIC, and NOE10) (Figs. 1 and 2). The all-PSC
of PBDT-TAZ:NOE10 exhibited greatly improved stability com-
pared  with  other  devices,  whose  PCE  retained  95%  after
400 h of storage in a nitrogen-filled glovebox at room temper-
ature under dark.  Under the same conditions,  the PCBM- and
ITIC-based  solar  cells  retained  less  than  70%  of  their  initial
PCE  after  100  h.  Moreover,  the  all-PSC  of  PBDT-TAZ:NOE10
showed superior  thermal  stability  with >97% of  its  initial  PCE
after  300  h  continuous  thermal  aging  at  65  °C.  All-PSCs  were
also  reported  to  be  stable  under  continuous  light  illumina-
tion.  The  PM6:PY2F-T:PYT  ternary  cells  were  exposed  to  con-
stant light illumination under both room and elevated temper-
ature[8].  Impressively,  only  a  slight  decrease  in  PCE  was  ob-
served  after  200  h  simulated  1-sun  illumination.  Sub-
sequently,  the PCE reached an almost steady state and main-
tained  90.5%  of  its  initial  PCE  after  continuous  illumination
for 2000 h at room temperature. The extrapolated time for re-

taining 80% initial  efficiency (T80)  is  up to 20 500 h (Figs.  4(a)
and 4(b)).  More  importantly,  the  PM6:PY2F-T:PYT  cells  re-
tained  83.5%  of  their  initial  PCE  under  continuous  illumina-
tion  and  thermal  aging  at  65  °C  in  a  nitrogen-filled  glovebox
(Fig.  4(c)).  These  results  demonstrate  that  all-PSCs  can  oper-
ate stably under synergistic light and thermal stresses.

Another  important  merit  of  all-PSCs  is  their  mechanical
flexibility.  The  great  tolerance  to  severe  mechanical  defor-
mation  of  all-PSCs  provides  an  advantage  for  application  in
flexible and stretchable devices.  Kim et al.[64] took the lead to
fabricate  flexible  all-PSCs.  The  all-PSCs  of  PBDTTTPD:N2200
(Fig.  2)  exhibited  ductile  crack  grow  in  contrast  with  obvious
brittle  crack  propagation  of  fullerene-based  solar  cells,  lead-
ing  to  60-  and  470-fold  improvement  in  elongation  at  break
and toughness,  respectively.  Yang et al.[65] used a sticky poly-
mer  (PDPS)  as  additive  to  reinforce  the  toughness  of  N2200-
based all-PSCs (Fig.  5(a)).  Adding 10 wt% PDPS into the poly-
mer  matrix,  the  resulting  film  exhibited  superior  toughness
up to 9.67 MJ/m3 with an elongation at break of 50.92%, and
the blend film deposited on polyethylene terephthalate (PET)
can  twist  (Figs.  5(b)–5(d)).  The  device  maintained  90%  of  the
initial  PCE  after  100  bending  cycles  with  a  bending  radius  of
3.0  mm  (Fig.  5(e)).  Inspired  by  these  works,  a  set  of  PSMAs
(PF2-DTC,  PF2-DTSi,  and  PF2-DTGe)  (Fig.  1)[66] were  de-
veloped  to  make  mechanically  robust  all-PSCs.  The  all-PSCs
based  on  PF2-DTSi  achieved  the  highest  PCE  of  10.77%  as
well  as  a  high  toughness  of  9.3  MJ/m3 and  an  elongation  at
break  of  8.6%.  These  studies  clearly  showed  that  all-PSCs
have bright prospect for flexible and wearable applications.

In  summary,  new  polymers  made  from  isomerically  pure
monomers via simple  and  high-yield  synthesis  are  required.
PSMAs can be also synthesized by using non-fused ring small
molecular  acceptors.  For  conventional  D–A  type  polymer  ac-
ceptors,  excellent  device  stability  and  mechanical  properties

 

 

Fig. 4. (Color online) (a) Normalized PCEs as a function of light-soaking time. (b) The performance versus T80 lifetimes of PSCs reported so far. (c)
Normalized PCEs for the devices under continuous illumination in a nitrogen glovebox at 65 °C. Reproduced with permission[8], Copyright 2021,
Elsevier.
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provide them unique advantages. These polymers will be prac-
tically  useful  provided  that  the  PCE  can  be  significantly  en-
hanced.  More  efforts  should  be  devoted  to  rational  polymer
design  and  morphology  control.  More  morphology  regula-
tion strategies will greatly speed up the advances of all-PSCs.
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